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Abstract: Automatic change detection employing correlation techniques re­
presents an attractive alternative to manual methods . Tne image manipula­
tions required are presented , the emphasis being placed on correlation tech­
niques . The impact of gray-level and noise characteristics on the correla­
tion function, correlatibility aspects , computation techniques , and feed­
back algorithms are discussed. 

l. Introduction 

Change detection is a techn i que in which one compares two images of the same 
areas taken at different times ( "mul t i temj_)Oral imagery" ) to determine where 
major changes have occured . The degrees of change depend on the type of 
imagery , the exposure conditions , and the time difference between exposures . 
In any instance , a search for changes will involve tediously checking areas 
of no change while trying to detect changes . 
By automating the change detection process , the human obse r ver is set free 
to concentrate on the analysis of detected changes rather than performing 
the detection himself . For high-volume data processing the automated pro­
cess (see Fig . I) offers an attractive alternative to purely manual image 
processing due to its speed and cost- effectiveness . This paper will discuss 
the various processing steps with emphasis on the correlation technique . 
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I Sub image 
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Figure I Change detection process 

2 . Preprocessing 

2. I Calibration and Normalization 

For most remote sensors , internal radiometric calibration cannot be imple­
mented consistently from sensor to sensor and for multitemporal imagery. 
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Further atmospheric effects such as haze and cloud cover necessitate norma­
lization of multi-image data. There exist three basic procedures to provide 
good radiometric calibration and normalization of multitempora l imagery /18J 
In equal interval quantizing the range of the original gray values is divi­
ded into equal length intervals, i . e . multi-images which are identical ex­
cept for a linear scaling and different gray-level means will produce iden­
tical equal interval quantized images . In equal probability quantizing for 
any interval of gray-levels the number of image elements is made the same 
as for all other intervals. In data normalization the original data are 
normalized to a pregiven mean and variance . 

2 . 2 Filtering 

The first objective 1s to compensate 1mage degradations caused by the sen­
sor . In the case of image-motion blur (the convolution of the true image 
with a rectangular pulse corresponding to the length of the exposure) the 
degrading transfer function can be analytically modell ed and subsequently 
be removed by inverse filtering /1/ , /34/. Loss of deta i ls due to modulation 
transfer function (MTF) roll off can be compensated by boosting the high 
spatial frequencies wi th a filter that is the reciprocal of the MTF /1/ . 
The removal of high frequency noise or periodic system noise can be imple­
mented using low-pass and band-reject filtering, respectively /7/ , /23/. 

The second objective of preprocessing is to selectively preprocess the ob­
ject information involving edge enhancement , differentiation , integration 
or pass/reject-filtering techniques /24/ . As an example for remote sensor 
data consider the removal of shading or glare effects /7/ . 
All f i ltering operations may be performed either in the spatial frequency 
domain esing Fast Four ier Transform (FFT) algorithms /9/ or in the spatial 
domain using the convolution technique . The advantage of filtering via the 
FFT is ease and versatility of the frequency filter design technique /12/ , 
/35/ , one filter operation requiring a total of 4 NM log2 NM + NM complex 
operations . The (equivalent) di rect convolution in the spatial domain 
offers a time advantage for small non-zero areas of the filter point-spread 
function , the spatial equivalent to the frequency filter /17/ . 

3 . Geometric Corrections 

3 . I Principle 

Multitemporal imagery must be registered with respect to one common geomet­
ric data base prior to automat i c change detections . The image mismatches 
may be caused by different sensor design characteristics and/or temporally 
different sensor orientations (altitude, att i tude) . Denoting the i mage co­
ordinates of images i= J, ... , I by xi, Yi and the data base coord i nates by 
xb,Yb the problem is to map the images i= J, ... I into the xb,Yb system by 
the set of equations 

x. 
1 

y. 
1 

i=J , ... I ( I ) 

where f and g are mapping functions to be discu ssed in section 3 . 2. Effi ­
cient implementations are carried out establishing first an interpolation 
grid ("anchor points") in the data base system, the grid spacing being 
chosen such that bilinear interpolation between these anchor points is 
sufficiently accurate . The regist r ation process is pe r formed using the in­
direct method : Point by point a set of xb ,Yb coordinates is defined , and 
the corre sponding image coordinates Xi,Yi computed . Since xi,Y i wi ll 1n 
general not be integer numbers , a resampling must be carried out for all 
data base points /6/ . 



3 . 2 Mapping Functions 

Mapping functions can be defined us1ng either parametric or non-parametric 
methods, whose orientation parameters or modelling coefficients, respective­
ly, are determined through pass point coordinates like in conventional pho­
tograrnmetry. 
Parametric methods are based on the collinearity equations and the analyti­
cal modelling of the exterior orientation elements of the remote sensor, 
the resulting expressions optionally including object point elevations or a 
digital terrain model. For aircraft and satellite line-scanner imagery /4/, 
/28/,/33/, conical scanner imagery /32/, and side-looking airborne radar 
imagery /30/ these parametric methods have been extensively investigated. 

Non-parametric methods include linear least squares prediction with and 
without filtering, meshwise linear interpolation /33/, bivariable polyno­
mials /6/, multiquadric interpolation /14/,/16/ and other interpolation 
methods. Since in practical applications non-parametric methods gave re­
sults "which were comparable to or better than the ... parametric proce­
dure" /33/, their application to geometric correction modelling is justi­
fied and also advantageous due to ease in handling and versatility . An 
investigation on the accuracy and economy of different interpolation 
methods (on topographic data) showed multiquadric interpolation to be the 
most efficient one /20/ . Multiquadric· theory and practical examples de­
monstrating the method ' s flexibility to irregularly distr i buted data have 
been published over the last decade /15/,/19/ . 

3 . 3 Pass point determination 

Besides the manual measurement of a few initial pass points, pass point 
densification must be implemented by automatic means, i.e. by subimage 
correlation, in order to be operational . Since correlations can effectively 
detect translational bias only rather than rotational differences, prior to 
any correlation a geometric registration (with a minimum of 2 pass points) 
must be performed, in order to reduce the initial infinite number of rota­
tional degrees of freedom. Therefore geometric and correlation algorithms 
must work in a feedback fashion rather than in a sequential mode , until the 
required pass points have been precisely determined . 

4 . Correlation 

4. I Principle 

Subimage correlation is basically an operation of pattern-position-detec­
tion : Given a MxM gray-level pattern ("window" W) in image i , locate the 
same pattern in another image, e.g . the data base. For the time being as­
sume both patterns to be located within identical geometric registration 
schemes. The correlation function and algorithm must detect the MxM sub­
image s* inside a LxL , L>M search area A, which is most similar to the 
window W. In order to successfully apply correlation operations, the impact 
of gray-level and noise characteristics and the spatial resolution on the 
properties of the correlation function must be analysed and appropriately 
accounted for by adaptibility of the algorithms . 

4 . 2 Characteristics of correlation functions 

While in photograrnmetry one is mainly concerned about spatial resolution of 
photographs, in image correlation it is the spatial frequency content 
(power spectrum) of the gray-level function d(x,y) that plays the key role . 
This is based on the Fourier transform relationship between its power spec-



trum P(fx , fy) and its autocorrelation function cA(ux ,6y) , referred to as 
Wiener-Khinchin theorem /12/ , /35/ 

+oo 

cA(6 x, 6 y) = F-J {P(f ,f )} = J P(f , f )exp(j2~(6xf +~yf ))df df (2) 
X y X y X y X y 
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direct and inverse Fourier transform operators 
spatial frequencies in lines/mm 
shift (lag) coordinates 
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P(f ,f ) = /F{d(x , y)}/ 
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d . ( ) I /2 . . 1 1 . an J= -J . F~gure 2 shows three examples for c~rcu ar y symmetr~c power 
spectra, FR denoting the radial spatial frequency, and R the radial lag 
coordinate. 
Fig. 2(a) has a bandlimited "white" power spectrum, its cut-off frequency 
F0 governing the width of the correlation signal, which is the Besselfunc­
tion of first order, J1, divided by its argument. For F0 app roaching zero, 
(a) illustrates the well-known fact that homogeneous gray-level patterns, 
i.e. a zero-frequency by itself, does not permit any successful correlation. 
For F0 approaching infinity, it represents the ideal case of an unlimited 
"white" power spectrum, yielding a spike (delta-function) as correlation 
signal . Fig. 2(b) illustra tes the contribution of a single frequency F0 to 
a correlation signal . This contribution is a Besselfunction of zero order, 
increasing the frequency F0 resulting in improved shapes of the correlation 
signal. 
In aerial photography, power spect r a generally display circular symmetry 
a nd show a decrease in power with increasing spatial frequency, approaching 
zero power at and beyond the resolution limit, as illustrated in Fig . 2(c). 
For a number of photographs of scales 1 : 50000 an average parame ter F0=2-3 
lines/mm was found to be representative, resulting in approximate half­
widths of 0 .06 mm for the correlation function /29/. No useful frequency 
power was found to e xis t beyond 40 lines/mm. The limited impact of the 
higher frequencies on the correlation function of aerial photographs fol­
lows from combined interpretation of Fig . 2(b) and (c): Due to the exponen­
tial power loss their modelling effect on the shape and size of the corre­
lation fu nction is bound to be rather small . 

4.3 Sources of input contamination 

During data acquisition many noise sources degrade the data /8/. Electronic 
noise is caused by random thermal motion of electrons through the circuitry. 
Photoelec tronic no ise is encountered during the conversion process in imaee 
sensors due to the statistical nature of light. These two predominantly 
"white" noise sources can, however, be made arbitrary small by trading off 
time for improved signal-to-noise ra tio S/N. 
Theref t1re, photo grain noise during film scanning presents the main problem 
due to its determin istic spatial behaviour . Grain noi se is due to the bina­
ry photographic process: A grain will be either exposed and subsequently 
reduced to metallic silver, or kept unexposed and washed off the emulsion . 
Density variations are then simply variations in grain-concentrations and 
so grain noise is signal-(density-) dependent. The S/N of a scanned film 
can be modelled as /21/ 

S/N 
4 . 5 a 

( 4) 
D112 

o(D) 



with the local average density D, the scanning aperture diameter "an in micro­
meters, and the grain noise o(D) as decimal fraction of 0 .001 . Typical va­
lues for o(D) are 9 for High Definition Aerial, and 20 for Panatomic X fil~ 

Another source of contamination is the MTF of the scanning aperture, addi­
tionally reducing the S/N ratio with increasing apertures . 
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Figure 2 Relationship between power spectrum (left) and autocorrelation 
function (right) according to the Wiener-Khinchin theorem for 
circularly symmetric power spectra 

4 .4 Multi-level versus binary imagery 

The number N of quantizing levels is important for the mean square error 
RMS to be expected for the correlation function . It has been shown that a 
small increase inN reduces this error sharply /10/ . Several (N;RMS) pairs 
are reproduced here : 

(2;72) (4;2 . 75) (8;1.23) (16 ;1. 05) ... (256 ; 1. 01) ... (oo;J. OO) 

This implies that binary quantized inputs must use about 72 times larger 
samples than inputs quantized to 8 bit (256 levels) , in order to yield same 
expected errors . Since in photogrammetric "point" correlations the sub­
image-sample is to be kept a minimum , b i nary quantized inputs are not 
feasible . 

To this author ' s knowledge, the impact of selective binary quantization 
such as a gradient operation has not yet been investigated. Gradient images 
have the advantage of circumventing the problem of tone reversals frequent­
ly encountered in multitemporal imagery, s i nce tonal borders will be in­
va riant features in all images. However , gradient images are inherently 
noisy due to the high-pass filtering and differentiation effects , and very 
sensitive to the border threshold used. Up-to-date gradient image corre­
lations did not prove superior to multi-level correlations in pr actical 
experiments (2/ , /26/ . 

4 . 5 Computation techniques 

Different correlation techniques offer largely different degrees of matching 
accurac~ and computational economy . According to sect ion 4. I, a total of 
(L-M+I) subimages S=(sik) , i,k=l, ... ,M must be checked for similarity with 
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a MxH w~ndow W=(wik). Theoretically this would involve processing of 
(L-H+I)2H2 windowing pairs of gray-levels (sik•wik). Since only a few points 
will be located in the neighborhood of the best match s*, there is a consi­
derable waste in computational effort involved when using rigorous computa­
tion techniques . Instead a simpler criterion should be used to define poten­
tial match positions . 
An efficient algorithm to get to the neighborhood of the best match is 
called Sequential Similarity Detection Algorithm SSDA /5/. Its principle ~s 
to difference windowing pairs in a random nonrepeating sequence, sum the 
absolute values of the differences, and test this sum against a pregiven 
threshold value while windowing pairs are accumulated . When the threshold 
is exceeded , the subimage is immediately defined as a mismatch . For a suit­
able threshold /26/, many fewer than M2 windowing pairs will have to be pro­
cessed for mismatches, because for them rapid difference accumulation will 
occur . It is this property that significantly reduces the computing time by 
about two orders of magnitude. 
Once the SSDA defined potential match positions, any of the following more 
efficient (but slower) techniques may be employed to precisely define the 
match position. 
Correlation coefficient 
The most commonly used correlation coefficient /6/,/11/,/31/ removes the 
mean value and uses complete normalization : 

1/2 
r = o I (o o ) 

ws ww ss 
(5) 

where o , o denote the statistical variances, and o the covar~ance. 
ww ss ws 

Semi-normalized correlation coefficient 
It is defined as rsn = Owsloww, the difference to the correlation coeffi­
cient being that only the window-variance is used for normalization pur­
poses . Although rsn is theoretically somewhat inferior to r, differences in 
practice tend to be minor /21/. 
Covariance 
The covariance OWs is identical to a non-normalized correlation coefficient. 
Except for unusual cases, the positions of maximum covariance will coincide 
with those of maximum correlation coefficient . 
Hinimization of sum of squares of differences 
The results are similar to those of the covariance, however, slightly more 
computations are needed. 
Fourier transform correlation (FTC) 
In Fourier transform correlation, the entire search area A (i.e. all pos­
sible subimages S) must be correlated at once with the window W /2/ . It is 
clear that FTC is only practical when all those correlation values are ac­
tually required . FTC is the frequency domain equivalent of the covariance 
Ows• implemented by 

FTC= F-J {F{A} F{W} ' } (6) 

where F and F-1 denote the direct and the inverse Fourier transform opera­
tors, implemented by FFT algorithms /9/, the prime (') indicating a complex 
conjugate operation, and A,W having their mean values removed . Upon complete 
normalization by the same computational technique as required for the corre­
lation coefficient an exact replica of the correlation coefficient is ob­
tained . The ratio of the number of equivalent integer add operations (on a 
general-purpose computer) necessary for computation of r and FTC is g~ven 
as /S/ 

r 
FTC 

4 . 5 H2(L-H+I)2 
200 L2 log2L 

(7) 
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For large windows and search ranges FTC becomes computationally superior, 
the requirement of M being a power of two for the FFT algorithm being 
readily circumvented by appropriate zero-fill. 
Binary (Polarity) correlation 
The numerator of the correlation coefficient is implemented by additions 
rather than multiplications : +I is added when the windowing pair is alike, 
-1 is added when they are unlike . Computationally, this method is fast, but 
reliability for small windows rather low (see section 4 . 4) . 
Complex exponentiation correlation (CEC) 
The real-valued windowing pairs are mapped into the complex number domain 
by the operations /13/ , /16/ 

wik exp(-jpwik) and sik exp(-jpsik) i,k=I , M (8) 

where p denotes an exponentiation parameter governing the conversion of 
gray-level differences into phase changes p(wik -sik) · App l ication of the 
theory of linear systems yields as correlation function squared 

CEC = / E exp(-jp(w.k-s. ))/
2
=/ E cos p(w . k-s . k)/

2
+/ E sin p(w1.. k-s1.. k)/

2 ~) 
. k 1. l.k . k 1. 1. . k 1., 1., 1. , 

which is invariant with different data mean values . For mismatches the 
phases tend to be incoherent meaning CEC approaches zero . For match posi­
tions, however, the phases tend to be differentially coherent (a constant 
phase bias is of no impact) and thus produce a maximum provided contamina­
ting noise does not destroy or "swamp" this coherence. The influence of 
contaminating effects can be controlled by appropriately limiting the value 
of p by the empirical relation 

p ~ O.Sn/(oAA + oww)
112 

(I 0) 

where oAA,OWw are the variances of search and window areas, respectively. 
In summary it follows that autocorrelations produce a spike (delta-func­
tion), meaning the power spectrum has been whitened by the complex exponen­
tiation. This is merely the ideal case as illustrated by Fig. 2(a) for 
F~ ~ =. 
Subpixel match positions 
The exact match position will in general not be located at integer coordi­
nate positions in the data base . In order to obtain subpixel accuracy some 
investigators /6/,/3 1/ fit a least squares smooth surface (e . g . a cone with 
an elliptical base) to a small grid of correlation values surrounding the 
best ~ _eger match position, defining the location of the surface ' s maxi­
mum as best non-integer match position . 

4 . 6 Correlatibility and geometric feedback considerations 

The initial stage of subimage correlation must be performed on imagery 
being only globally corrected for geometric distortions. Consequently only 
the coarse image details of corresponding areas will be in-reg i stration . An 
appropriately large window area must be defined to enable meaningful low­
frequency correlation and to avoid false correlations due to significant 
power of the medium out-of-registration frequencies /21/,/14/. For computa­
tional efficiency QxQ original pixels may be combined to one window pixel, 
Q depending on the ratio of scanning and correlated frequency /14/,/16/ . To 
avoid useless computational efforts window locations should be selected at 
tonal borders by checking a gradient threshold . This initial stage merely 
serves as a pull-in or lock-on procedure, defining a larger pass point set 
of good accuracy enabling the vital subsequent feedback operation, i . e. the 
updating of the geometry. 
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During higher correl a ti on s ta ges me d i um and itigher frequencies are permitted 
to influence the c orre l a tion funct i on to improve tlte matching accuracy . Due 
to the updated geome t r y the correlatibility of these higher frequencies has 
become meaningful . Again , window sizes must be used according to the lowest 
correlated frequ~ncy . Tltis process is repeated until the finest resolvable 
detail has been correlated , a cutoff frequency being estimated by unreliab­
le small S/N ratios and unpermittable MTF-degradations on the higher fre­
qu e ncies . A frequen c y ratio of 2: I between successive iterations was found 
to work quite efficiently /22/ . 

5 . Radiometric corrections 

Apart from the generally small percentag e of real object chang es, gra6-
levels of corresponding image positions should ideally lie along a 4.J re­
gression line . Deviations from a 45° slope and a non-zero intercept give 
evidence of differences in contrasts and mean gray values , respectively, as 
might be caused by different film speeds, exposure times etc . Since diffe­
rences in mean values and contrasts are in general a spatial image functio~ 
appropriate radiometric correction must be performed prior to any sub­
sequent processing /31/ . 

b . Differencing 

After radiometric corrections have been applied, the images of interest are 
differenced pixel by pixel. Commonly a thresholded difference image is pro­
duced: Pixels within some threshold T of 128 are all set to a neutral gray­
level, e . g. 128 . Pixels that were originally between 0 and 128 minus T are 
set to zero, while all those originally between 128 plus T and 2S5 are set 
to 255 . All pixels of values zero or 255 i ndicate features present only in 
one of the images, while neutral gra y-level areas indicate areas of no sig­
nificant change . The threshold T is d e termined automatically for small sub­
regions by evaluating the RMS deviations of their pixels in a direction 
perpendicular to the subregion regression line /16/ , /31/ . 
By producing such a thresholded diffe r ence image the user is able to over­
come the tedious and time-consuming looking back and forth between the 
images to be compared . Instead, he can immediately concentrate on the qua­
litative assessment of changes by interpretation of the areas concerned in 
the original imageries . 

7 . Postprocessing and analysis 

The two geometrically and radiometrically corrected 1mages can alternately 
or additionally serve as input to a combined change detection and pattern 
recognition algorithm . Parameters of entropy, a correlation coefficient, 
and high-intensity probability may be calculated for subregions, a non­
linear discrimination algorithm being subsequently employed to optimally 
separate subregions with changes from those where no changes were detected 
/27/. Sequences of two or more images may be analysed using first-order 
difference images , providing a separate estimate for images of moving ob­
jects and of stat i onary scene components /25/ . For the analysis of changes 
in coastal environments four techniques were investigated, a comparison of 
independently produced spectral classifications being one of the most pro­
mising ones /3/ . 
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